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The diffusion-controlled dissolution of a spherical particle consisting in two epitaxially stressed solid phases
of a substitutional binary alloy in contact with an undersaturated solution is investigated. A linear stability
analysis of the solid-liquid interface demonstrates that a morphological instability of the particle may occur due
to the epitaxial stress generated by the spherical precipitate embedded in the solid matrix, the liquid pressure
being neglected. The critical radius of the particle below which the interface is unstable is determined and the
conditions for the roughness development are discussed.
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In terms of solute diffusion, the morphological change of
a growing spherical crystal has been first studied to the au-
thor’s knowledge by Mullins and Sekerka �1�. These authors
demonstrated that the gradient of concentration in a super-
saturated solution is the driving force of the instability while
the isotropic interfacial free energy has a stabilizing effect.
The effect of interface kinetics and the conditions for self-
similar evolution leading to shape invariant growing crystal
have been also investigated �2–4�. The morphological
change of a nonhydrostatically stressed planar solid has been
first investigated in the linear regime by Asaro and Tiller �5�,
Grinfeld �6�, and others �7,8�. For a growing spherical pre-
cipitate embedded in an infinite-size solid matrix, the epitax-
ial stress has been found to enhance the instability of the
interface when the matrix is harder than the precipitate �9�.
The destabilizing effect of composition stress on the mor-
phology of a spherical particle growing in a supersatured
solution has also been characterized �10�.

Dissolution phenomena such as dissolution of salt in
aqueous solution, dissolution of rock formations or second
phase precipitate in metals have been widely investigated.
The dissolution of a spherical particle in an undersaturated
solution has already been described �1�. It has been empha-
sized that both effects of concentration gradient and interfa-
cial free energy add to smooth the crystal shape. Recently,
the study of the diffusion-limited dissolution of a 2D corru-
gated crystal has confirmed the decay of the initial grooves
of the surface �11�. The study of the dissolution of a square
cylinder using lattice-Boltzman’s method has also shown that
the front rounds �12�. The dynamics of a dissolution front for
stressed planar salt crystals in contact with an aqueous fluid
has been studied �13�. Both diffusion and dissolution are
found to be limiting factors. Experimental studies �14,15� of
the formation of alloys �Mo-Ni� by liquid phase sintering
have been realized when other elements are added to the
liquid or when heat treatment at a temperature different from
that of the sintering is performed. The coherency strain ap-
pearing during the recrystallization of the new solid may
induce interface instability. Recently, mechanofusion tech-
niques have been developed �16� to produce two phases
coated fine metallic particles where stress may also play an

important role. In this paper, the critical effect of epitaxial
stress on the interface morphology of a two-phase spherical
particle in contact with an undersaturated solution is investi-
gated.

A two component spherical solid is in contact with an
isothermal undersaturated solution under pressure PL. The
solid is a substitutional binary alloy consisting in two phases
epitaxially stressed through a coherent interface �see Fig. 1
for axes�. The first solid phase is a spherical precipitate of
radius R, shear modulus �p and Poisson’s ratio � embedded
in a finite-size matrix of initial outer radius Ri, shear modulus
�m and Poisson ratio’s �. In the following, both effects on
the particle morphological change of interfacial stress and
hydrostatic pressure PL �in particular when �p��m� are as-
sumed to be much smaller than that of epitaxial stress and
have not been considered. In the reference state �17�, the
matrix is stress free with its equilibrium lattice parameter
while the precipitate in the matrix is stressed by Tij

p,*

=−Cijkk
p �p,*, with �p,* the eigenstrain located in the precipitate

resulting from the misfit between the two phases �9�, Tij
p,* the

intrinsic stress in the precipitate and Cijkl
p its elastic moduli.

Linear isotropic elasticity theory is used and summation over
repeated indices is implied. The atomic volumes of the two
species are assumed to be of the same order of magnitude
such that composition stress vanishes. Both solid and liquid
are dilute solutions and the vacancies are neglected. The dif-
fusion coefficient in the solid is taken to be zero. The con-
centration of the solute is fixed to CS in the matrix. The
position dependent concentration of the solute in the liquid is
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FIG. 1. The solid-liquid interface of a two phase spherical par-
ticle is perturbed with the help of the Y3

0 harmonic �the scale is
enlarged�.
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labeled cL�r��, its uniform value at infinity is labeled cL
�. The

equilibrium concentration of solute in the liquid at a flat
interface under constant pressure is denoted by cL

0 and at the
general stressed interface by cL

i . The study of the diffusion-
controlled dissolution process requires that contrary to the
growth case, �cL

0 −cL
�� /cL

0 �0. In the quasistationary approxi-
mation �1� where ��cL

�−cL
i � / �CS−cL

i ��� ��cL
�−cL

0� / �CS−cL
0�

�1, it is assumed that cL satisfies Laplace’s equation
	cL�r��=0. The condition of solute conservation yields

�CS − cL
i �Vn = D�� cL · n� , �1�

with Vn=r�̇i ·n� the normal velocity of the interface located at

r�i, r�̇i=dri /dt with t the time, n� the unit vector normal to the
interface pointing into the liquid and D the solute diffusion
coefficient in the liquid. At the solid-liquid interface, the con-
centration cL must satisfy the modified Gibbs-Thomson
equation �9,18,19�,

cL
i = cL

0 + cL
0
�� +

1

2�
Sijkl

m Tij
mTkl

m� , �2�

with � the interfacial curvature and � the interfacial free
energy per unit surface. Within linear isotropic elasticity
theory, Sijkl

m is the elastic compliance tensor and Tij
m the stress

tensor due to epitaxy in the matrix taken at the interface. The

constant 
 is defined by 
=
�V0��1−cL

0�

RT�cS
0−cL

0� with V0� the molar vol-

ume of lattice points in the reference state, cS
0 the solute

concentration in the matrix at a flat interface under constant
pressure, R the gas constant, T the absolute temperature. The
total displacement field u�k in the solid must satisfy Navier’s
equation �20�,

	u�k +
1

1 − 2�
�� �div u�k� = 2

1 + �

1 − 2�
�� �k,*, �3�

with k= p ,m and �m,*=0. At the coherent precipitate-matrix
interface, the mechanical equilibrium and the continuity of
displacement read

�Tij
p − Tij

m�nj
p = 0, u�p = u�m, �4�

with n�p the normal to the solid-solid interface pointing into
the matrix. The traction free condition on the external surface
of the particle at r�i requires that

Tij
mnj = 0. �5�

The solid-liquid interface is perturbed with the help of the
complete spherical harmonic Yl

m such that ri=Ri
+�A�Ri�Yl

m�
 ,�� with � the dimensionless expansion param-
eter and A�Ri� the amplitude of the interface fluctuation. The
diffusion and elastic problems have been solved to the first
order in � parameter assuming that the quasistatic approxi-
mation holds and that the mechanical equilibrium is satisfied
at all times in the solid. The elastic displacement and stress
are developed as

u�k = u�k,�0� + �u�k,�1� + ���2� , �6�

Tij
k = Tij

k,�0� + �Tij
k,�1� + ���2� , �7�

with k= p ,m. The general expression of the initial displace-
ment field u�k,�0� satisfying the Eq. �3� is given by u�k,�0��r��
=ur

k,�0��r�e�r with e�r the unit radial vector and �20�

ur
k,�0��r� = Ak

0r +
Bk

0

r2 +
1 + �

1 − �

1

r2�
r*
k

r

�k,*�r��r�2dr�, �8�

with r*
k a constant to be specified. One takes r*

p=0 for the
precipitate. Using linear elasticity, the strain tensor Eij

k,�0� is
derived from this displacement field �20�. Using Hooke’s
law, the stress and strain tensors satisfy to Eij

k,�0�=Sijlm
k �Tlm

k,�0�

−Tlm
k,*�. Following Leo et al. �9,17�, the displacement field

u�k,�1� is written as

ur
k,�1��r�� = fk�r�Yl

m�
,�� , �9�

u

k,�1��r�� = gk�r�

�Yl
m

�

�
,�� , �10�

u�
k,�1��r�� = gk�r�

1

sin 


�Yl
m

��
�
,�� , �11�

with the functions fk and gk given by

fk�r� = Ak
1rl−1 + Bk

1rl+1 + Ck
1r−l−2 + Dk

1r−l, �12�

gk�r� = Ak
1rl−1

l
+ �Bk

1rl+1 − Ck
1r−l−2

l + 1
+ �Dk

1r−l. �13�

The coefficients � and � are defined as follows:

� =
l + 5 − 4�

�l + 1��l − 2 + 4��
, � =

4 − l − 4�

l�l + 3 − 4��
. �14�

The resulting strain and stress tensors are also derived within
linear elasticity theory. The general expression of the solute
concentration in the fluid satisfying Laplace’s equation is

cL�r�� = cL
� +

EL
0

r
+

FL
1

rl+1�A�Ri�Yl
m�
,�� + ���2� . �15�

The different constants Ak
0 ,Bk

0 ,Ak
1 ,Bk

1 ,Ck
1 ,Dk

1 ,EL
0 ,FL

1 have
been determined by expanding Eqs. �2�, �4�, and �5� to the
first order in � but are not explicitly given. Using Eq. �1�, the
time evolution equations of the radius of the interface Ri and
of the perturbation amplitude A�Ri� are finally found to be
for Ri�R,

1

Ri

dRi

dt
= − ��Ri�	1 +

R*

Ri
�1 + G0

elas�
 , �16�

1

A�Ri�
dA�Ri�

dt
= − ��Ri��l − 1�

� 	1 +
R*

Ri
� �l + 1��l + 2�

2
+ 1 + G1

elas�
 ,

�17�
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with ��Ri�=D�cL
0 −cL

�� / ��CS−cL
i,sph�Ri

2��0, cL
i,sph=cL

0�1
+2
�1+G0

elas� /Ri� and R*=2
cL
0 / �cL

0 −cL
�� �1�. The elasticity

term G0
elas is given by

G0
elas =

9�p
2�1 − ��2

16�1 + ���1 − 2��2

R6

RATGRi
5

�
1

	�m�1 −
R3

Ri
3� + �p� 1 + �

2�1 − 2��
+

R3

Ri
3�
2

,

�18�

with RATG=�m� / ��1−��T0
2� the Asaro-Tiller-Grinfeld radius

and the stress T0=2�m�p,*�1+�� / �1−��. The elasticity term
G1

elas which is a nontrivial function of �p, �m, R, and Ri is not
explicitly given here. In the case where �m=�p and for l
�2, it simplifies as

G1
elas = −

R6

RATGRi
5

f�l,��
g�l,��

, �19�

with

f�l,�� = 7�1 + �� + l�19 + 20� + 2l�11 + l�l + 5��

+ l�20 + l�11 + 2l���� , �20�

g�l,�� = 4�l − 1��1 + ���l2 + �1 + 2��l + 1 + �� . �21�

From Eqs. �16� and �18�, it can be observed that the disso-
lution of the spherical particle is affected by elasticity since
the dissolution rate �dRi /dt� is increased by the positive term
G0

elas. From Eqs. �17� and �19�–�21�, it is found that the terms
in the growth rate of the fluctuation dA�Ri� /dt due to the
interfacial free energy and concentration gradient are nega-
tive and thus favor the decay of the harmonic. The elasticity
term −G1

elas is always positive and favors its growth. This
behavior is persistent in the general case where �p��m. As
a consequence, the elasticity contribution to the time evolu-

tion Eq. �17� of the harmonic is stated to be the only source
of destabilization of the solid-liquid interface. In the case of
growth, when the solution is supersaturated, i.e., when cL

�

−cL
0 �0, the concentration gradient is the main source of

interface destabilization �1�. The elasticity term calculated
here is also assumed to participate to the morphological
change but its effect is suspected to be limited since G1

elas

decreases as the particle grows. As a consequence, one may
have G1

elas�1+ �l+1��l+2� /2 for sufficiently high values of
Ri. The translation �l=1� mode is not considered �10� and the
morphological change is investigated when at least the sec-
ond harmonic Y2

m develops. The critical radii Ri
c�l=2� and

Ri
c�l=3� below which �1/A��dA /dt��0 and the second and

third harmonics Y2
m and Y3

m may appear are plotted in Fig. 2
as a function of RATG/R* for R=20R*, �p /�m=1.5, and �
=0.343. It can be observed that as RATG decreases, the criti-
cal radii increase demonstrating thus that the higher the in-
trinsic stress is the sooner the morphological change appears

FIG. 2. �Color online� Ri
c�l=2� /R* and Ri

c�l=3� /R* versus
RATG/R* for �p /�m=1.5 and R=20R*.

FIG. 3. �Color online� Ri
c�l=2� /R* and Ri

c�l=3� /R* versus
�p /�m for RATG/R*=0.1 and R=20R*.

FIG. 4. The maximum number of harmonics with l�2 suscep-
tible to appear versus RATG/R* for �p /�m=1.5, Ri→R and R
=20R*.
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during the dissolution process. For a copper-based alloy, tak-
ing R=8.314 J mol−1 K−1, T=400K, V0�=7.12 cm3 mol−1, �
=1.4 J m−2, cL

0 =0.01, �cL
0 −cL

�� /cL
0 =0.1, cS

0=0.1, �m
=48 GPa, and �p,*=0.6%, one gets the following order of
magnitude for the physical parameters of the problem
RATG/R*=0.1. In Fig. 3, the critical radii Ri

c�l=2� and Ri
c�l

=3� are then plotted as a function of the ratio of shear moduli
�p /�m for R=20R* and RATG=0.1R*. It can be observed that
the morphological change is enhanced when the precipitate
becomes harder, i.e., when �p /�m�1, and the initial elastic
energy density resulting from epitaxy increases at the solid-
liquid interface. In Fig. 4, the maximum theoretical number
of harmonics nl

max �with l�2� susceptible to appear on the
interface before the complete dissolution is achieved, i.e.,
when Ri→R, is finally plotted versus RATG/R* for �p /�m
=1.5. It is found that for RATG/R*=0.1, nl

max may be of the
order of 100. Providing thus that the dissolution is not too
fast and the epitaxy is sufficiently high, several harmonics

may interact in the nonlinear regime of evolution leading to
a rough interface. It is concluded that even though the elastic
effect must overcome the conjugate stabilizing effects of the
concentration gradient and interfacial energy, the develop-
ment of the roughness due to epitaxial stress on a finite time
scale corresponding to a partial dissolution of the solid ma-
trix may be important.

In this paper, the linear analysis of the kinetics of the
solid-liquid interface of a spherical particle in contact with
an undersaturated solution has demonstrated that the epitax-
ial stress is at the origin of the morphological change of the
crystal. It can finally be emphasized that the present analysis
may have applications in other fields than metallurgy. It
would be, for example, relevant to investigate the stress ef-
fect on the functional degradation of biodegradable implants
or on the dissolution of geomaterials of various geometries in
contact with aqueous solutions �12�.
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